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Three direct numerical simulations of incompressible turbulent plane mixing layers have been

performed. All the simulations were initialized with the same two velocity fields obtained from

a direct numerical simulation of a turbulent boundary layer with a momentum thickness

Reynolds number of 300 computed by Spalart [J. Fluid Mech. 187, 61 (1988)]. In addition to

a baseline case with no additional disturbances, two simulations were begun with

two-dimensional disturbances of varying strength in addition to the boundary layer turbulence.

After a development stage, the baseline case and the case with weaker additional

two-dimensional disturbances evolve self-similarly, reaching visual thickness Reynolds numbers

of up to 20 000. This self-similar period is characterized by a lack of large-scale organized

pairings, a lack of streamwise vortices in the "braid" regions, and scalar mixing that is

characterized by "marching" probability density functions (PDFs). The case begun with strong
additional two-dimensional disturbances only becomes approximately self-similar, but exhibits

sustained organized large-scale pairings, clearly defined braid regions with streamwise Vortices

that span them, and scalar PDFs that are "nonmarching." It is also characterized by much more

intense vertical velocity fluctuations than the other two cases. The statistics and structures in

several experiments involving turbulent mixing layers are in better agreement with those of the

simulations that do not exhibit organized pairings.

I. INTRODUCTION

There have been several experimental measurements of

the statistics of high-Reynolds-number self-similar turbu-

lent mixing layers (e.g., Refs. 1-5). They were performed

with vorticity thickness Reynolds numbers (Re0,) as high

as 130000 (Ref. 1) and with varying velocity ratios

(Ut/Uh, where Uh and Ut are the high- and low-speed
free-stream velocities, respectively). Unfortunately, there

is a large variation among the experiments in even the most

basic statistical quantities, like the normalized growth rate

and the turbulence intensities. The normalized growth rate

of the vorticity thickness (r_o) is defined here as

Uh+U also, dSo,
rc°=2(UhiUt) dx--AU dx ' (1)

t

where _o, is the vorticity thickness, A U is the velocity dif-

ference, and U c is the convection velocity. This is the stan-
dard normalization used to eliminate the effect of different

velocity ratios (e,g., Refs. 6-8). In the experiments cited
above, rco varies from 0.081 in Liepmann and Laufer 1 to

0.098 in Wygnanski and Fiedler. z Furthermore, values of

the maximum cross-stream velocity variance (normalized

by AU z) vary from 0.01 in Liepmann and Lanfer 1 to 0.02

in Batt. 4 Dimotakis and Brown 9 suggested that the reason

for these and other variations in experimental observations

may be that turbulent mixing layers only slowly "forget"

the details of their initial conditions. Mixing layers may

thus exhibit a variety of apparently self-similar behaviors,

which change very slowly.
Since Brown and Roshko's s discovery of large-scale,

apparently two-dimensional, structures in turbulent mixing

layers, there has been considerable research aimed at de-

termining the origin, universality, and dynamical signifi-
cance of these structures (see Ref. 10 for a review). The

structures appear to be related to the two-dimensional roll-

ers that form due to the instability of a laminar shear layer,

and it has been widely assumed that these turbulent coher-

ent structures will behave in the same way as their pretran-

sition counterparts. However, it has also been suggested
that two-dimensional turbulent rollers are not a universal

feature of mixing layers, and that "pairings" can occur
locally along the span of a roller.U Such "local pairings"

have also been observed in transitional mixing layers.12'13'14

Thus the large-scale structures must depend on the char-

acter of the inlet disturbances, which may be facility de-

pendent. Also, the dominance of the coherent structures in

self-preserving turbulent mixing layers has been questioned

by Hussain, 15 who suggested that incoherent turbulence

and coherent structures are comparably important in the

dynamics of the layer.

The assumption that the turbulent rollers are dynam-

ically similar to their nonturbulent counterparts is attrac-

tive because much is already known about laminar rollers

and their instabilities. In particular, it is known that an

array of such rollers is unstable to subharmonic distur-

bances, which lead to pairing, 16A7and indeed pairings have

been reported in turbulent mixing layers. It is also known
that the rollers are unstable to three-dimensional distur-

bances that result in their bending and the formation of the

so-called rib vortices in the braid regions between the

rollers. 17:8 Recent results m suggest that this three-

dimensional instability is governed by two interacting

mechanisms, one characteristic of flows dominated by to-
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tation (as in the roller), which leads to the bending of the
roller, and the other associated with strain-dominated

flows (as in the braid or saddle region), which leads to the

formation of the rib vortices. As pointed out by Rogers and

Moser, 19 the magnitude of the strain in the braids and

rollers of the two-dimensional rolled-up mixing layer is

about the same at the centerline, so the difference in char-

acter between the two regions is caused by the reduced

levels of spanwise vorticity in the braid region. Thus, if the

turbulent rollers lead to braid regions that are substantially

depleted of spanwise vorticity, we might expect rib vortices

to form in the turbulent flow as well. There is experimental

evidence for rib vortices in turbulent mixing layers (e.g.,

Refs. 20-22). However, it is not clear under what circum-

stances the laminar stability ideas discussed above are ap-

plicable to turbulent mixing layers.

It has become customary to examine the probability

density function (PDF) of a passive scalar at various lo-

cations across the layer in an effort to quantify the char-

acter of the mixing (e.g., Refs. 4 and 23-27). Such PDFs

have been observed to fall into two classes: marching

PDFs, in which the most probable value of the scalar var-

ies across the layer, with the most probable value on each

side of the layer being closer to the free-stream value of

that side, and nonmarching PDFs, in which the most prob-

able value of the scalar is substantially independent of the

position in the layer (and is determined by the entrainment

ratio). Batt observed marching PDFs in a mixing layer in

air at Reo,_ 40 000. On the other hand, Konrad found non-

marching behavior in his layer at Re,o_.20 000 (in gas). In

later experiments, Mungal and Dimotakis (in gas at

Re,o._32 000) and Koochesfahani and Dimotakis (in wa-

ter at Reo,_ 12 000) also found nonmarching PDFs and

attributed the marching behavior observed by Batt to poor

measurement resolution, although it seems unlikely that

this could account entirely for the observed marching be-

havior. However, recent experimental measurements by

Karasso and Munga128 with Reo, up to 31 000 indicate that

the ultimate state of a high-Reynolds-number turbulent

mixing layer is characterized by marching PDFs.

To investigate the issues raised above, direct numerical

simulations of turbulent mixing layers were performed.

These simulations were designed to model experimental

situations in which the splitter plate boundary layers are

turbulent. Various statistical quantities are calculated and

flow fields are examined for evidence of the large-scale roll-

ers and other flow features that are expected by analogy

with the structure in nonturbulent flows (i.e., spanwise

rollers and streamwise rib vortices). In what follows, some

preliminary issues are discussed in See. II, while Sec. III

contains a description of the baseline simulation, and two

simulations with slightly different initial conditions are

presented in See. IV. Scalar mixing is examined in See. V,

and discussion and conclusions are given in See. VI. Fi-

nally, the terms in the balance equations for the Reynolds

stress components in the baseline flow are presented in the

Appendix.

II. PRELIMINARIES

The numerical simulations discussed in this paper were

performed by solving the three-dimensional time-
dependent incompressible Navier-Stokes equations. For

computational efficiency, a temporally evolving mixing

layer was simulated rather than the spatially evolving layer

typical of experiments. Comparisons of direct numerical

simulations show that the temporally and spatially evolv-

ing mixing layers are qualitatively and in some cases quan-

titatively similar. 29 In this study, the solution domain is

periodic in the streamwise (x 1) and spanwise (x 3) direc-

tions with periods 1258 ° and 31.258 ° , respectively, where

8°mis the initial momentum thickness of the layer (defined

below). Note that unlike the simulations performed by

Rogers and Moser, 19'3° the domain size is governed by the

domain size of the boundary layer simulations from which

the initial conditions were taken, rather than the expected

wavelength of the mixing layer instability. The domain is

infinite in the cross-stream (x2) direction, and a Galerkin
spectral method 31 was used to solve the equations with as

many as 512 X 210 X 192 Fourier/Jacobi modes. A passive
scalar with Schmidt number 1.0 that goes to zero and one

in the free streams, is also simulated.

The momentum thickness of the mixing layer is de-

fined by

_ fl U2\

8m= f--o_ _'4--'-'_'_) dX2" (2)

The initial momentum thickness/5 ° and the velocity dif-

ference A U are generally used for nondimensionalization,

and the time-dependent momentum thickness is used as a

measure of the layer thickness for the purpose of self-

similar scaling, as in Ref. 1. Thus the self-similar cross-

stream coordinate is defined to be g=x2/Sm(t). Momen-
tum thickness is used for self-similar scaling rather than

the vorticity thickness or other related scalings, which are

more common in experiments, because the momentum
thickness is less sensitive to statistical noise. This is because

the momentum thickness is an integral quantity while the

vorticity thickness is obtained from the derivative of the
mean velocity. Consequently, the momentum thickness

evolves smoothly in time while the vorticity thickness may

not. During the self-similar development of the baseline

flow discussed in See. III, the average ratio 8_,/8 m is 4.8.

This ratio would be 4.44 or 4.00 if the mean profile were an

error function or a hyperbolic tangent, respectively. Thus
the ratio is sensitive to the detailed shape of the mean

profile. In the following sections, experimental Reynolds

numbers will be quoted based on either vorticity or mo-

mentum thickness, depending on context.
The initial conditions for the simulations described

here were obtained from direct numerical simulations of a

turbulent boundary layer with a momentum thickness of
0.758 ° computed by Spalart. 32 Two different realizations

of his simulation with a momentum thickness Reynolds

number of 300 were used to mimic boundary layer turbu-

lence on either side of the splitter plate in an experiment.

To create a temporally evolving mixing layer, the two re-
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FIG. 1. One-dimensional energy (uiui) density spectrum at the mixing

layer centerline (_= 170.5). -- vs k 1 , m. VS k3"

alizations were brought together with their respective free

streams moving in opposite directions. The situation • is

similar to a thin plate with boundary layers from oppo-

sitely moving flows on each side. At time zero, the plate is

removed without disturbing the flow. The resulting mixing

layer initially has a vorticity thickness Reynolds number,

R%=AUSJv, of 1370, and a momentum thickness Rey-

nolds number, Re m = A USm/V of 800. The layer Reynolds

number grows as the layer spreads, with R% and Re m

reaching 10 800 and 2420, respectively, by the end of the
baseline simulation described in See. III. Another com-

monly quoted Reynolds number is that based on the "vi-

sual thickness," which is unfortunately difficult to define

precisely in the context of a simulation. A good approxi-
mation to the visual thickness is the vertical distance be-

tween the points where the mean product concentration Of
a fast Chemical reaction is at 1% of its maximum value. 25

The Reynolds number based on this thickness (Re1%)

reaches 20 000 by the end of the baseline simulation.
Koochesfahani and Dimotakis 25observed that the "mixing

transition" in their experiments begun from laminar

boundary layers occurred between Re1%----5600 and
Rel%-- 17 000. Furthermore, Breidenthal 2° found that the

transition occurs at even lower Reynolds numbers as the

velocity ratio approaches one (the limit in which the cor-

respondence between temporally and spatially evolving

mixing layers is exact). Thus the current simulations are at

sufficiently high Reynolds number to produce fully devel-

oped turbulence.

Another indication of the high Reynolds numbers
achieved in the simulations described here is the behavior

of the energy spectra. One-dimensional energy spectra at

the centerline of the baseline mixing layer described in Sec.
III at _=tAU/5°= 170.5 are shown in Fig. 1. The straight

solid line has a slope of --5/3. The streamwise one-

dimensional energy spectrum has approximately this slope
over half a decade of variation in the streamwise wave

number (k 1). Because of the limited spanwise domain size,

a region of --5/3 slope is not as apparent in the spanwise

(k 3) spectra.

III. THE BASELINE MIXING LAYER

The baseline simulation described in this section was

initialized with two realizations of a turbulent boundary

layer, as described in Sec. II. No added disturbances of any

kind were used. In the following sections, this simulation
will be referred to as the turbulent boundary layer (TBL)
flow.

A. Statistics and self-similarity

It is well known that developed turbulent mixing lay-

ers evolve self-similarly, 1°'33 with a linearly growing thick-

ness. By scaling large-scale quantities with the local layer

thickness and the constant velocity difference, statistical

profiles at different downstream locations (or at different

times in the temporally evolving flow) collapse onto a sin-

gle curve. In what follows, the numerically simulated mix-

ing layer is examined for evidence of such self-similar ev-
olution.

The evolution of the momentum thickness 8 m is shown

in Fig. 2(a) as a function of the dimensionless time _-.

Linear growth is achieved after _-_70. The integrated rate

of dissipation of turbulent kinetic energy,

/_? = e dx 2 (3)
oo

(e = 2vSqSq, where Sq is the strain-rate tensor) has units
of velocity cubed and is thus nondimensionalized by A U 3.

Since A U is constant, 8_ should be constant when the layer

is evolving self-similarly. The evolution of fF is also shown

in Fig. 2(a). Shortly after _-_ 100, 8_ does become approx-

imately constant until -r_ 150, after which a slight falloff

occurs. This suggests that after _-._ 150 the self-similarity

begins to break down. Other integrated large-scale statis-

tics also evolve as expected for a self-similar layer over the

period 105 <_-< 150. We thus identify this period as the

period of self-similar evolution.

The mean velocity profiles at five times during the self,

similar period are plotted with self-similar scaling in Fig.

2(b). Also included are the experimental data of Bell and
Mehta s for a mixing layer begun from turbulent (tripped)

splitter-plate boundary layers with Re m of up to 6000.
(The experimental profiles have been shifted to center

them at x2=0, thus accounting for the drift of the center of

the layer into the low-speed stream.) The collapse of the

data at the five times is excellent, and the mean profile

agrees very well with the data of Bell and Mehta. However,

the collapse of the scaled mean profiles is not a sensitive

indicator of self-similarity and is achieved for a longer time

period from _-_90 to the end of the simulation at _-= 187.5.

A more sensitive indicator of self-similarity is the col-

lapse of the Reynolds stress profiles uiuj and the profiles of

the components of the vorticity tensor topoi. The appropri-
ate self-similar scaling for the Reynolds stresses is clear
(AU2); however, the appropriate scaling for the vorticity

statistics is not as obvious. The required scaling can be

determined by recalling that f¢ scales with A U 3. In a mix-

ing layer that is homogeneous in xl and x3 we have the

identity
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FIG. 2. Evidence of self-similarity. (a) Time evolution of -- tSm/b'°,n

and .... 500_/A U3. (b) Collapse of the mean velocity profiles Ut/A U vs

g at five times in the self-similar period (--: _-= 105.2, ----: _'= 116.7,

..... : _'= 128.6, ---: r= 141.0, - • -: _-= 150.8) compared with the

experimental data of Bell and Mehta (1990) at three downstream loca-

tions (111,Xl= 108.1 cm; O, Xl= 128.4 cm; A, Xl= 189.4 cm).

e dX2=V 0) 2 dx2, (4)
oo _- --oo

where 0)2 = 0)ff.Oiis the enstrophy. We thus have

f, 0)2 f , V6m0)2-A-_=v _ --A-_ dx2= o_ -_--ffj- d_, (5)

where _=x2/8 m. Since _'/AU 3 is constant during self-

similarity, the integrand of the nondimensionalized inte-

gral on the right of (5) should collapse when plotted

against g. Thus the correct self-similar scaling for the en-

strophy, and by extension all components of the vorticity

tensor 0)#j, is AU3/(V_m)=RemAU2/32m . The factor of

Reynolds number appears in the scaling because the vor-

ticity statistics are not large-scale quantities. The dissipa-

tion does scale like a large-scale quantity (no Reynolds

number factor) because the dissipation rate is set by the
large scales, although the dissipation actually occurs at

small scales. When the Reynolds number factor is omitted

in the scaling of _-_j, the profiles increase in magnitude as
the flow develops since the Reynolds number is increasing

(see Refs. 34 and 35).

Profiles of u-_I/AU 2 and "V6m_--_3/AU3 at five different

times in the self-similar period are plotted against g in

Fig. 3. The collapse of the other components of the Rey-

nolds stress and vorticity tensors is equally good.
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FIG. 3. Collapse of u-_t/A U 2 and _'_3V6m/AU 3 in scaled coordinates at the

same five times shown in Fig. 2(b).

Since the Reynolds stress components are indeed self-
similar, the scaled Reynolds stresses can be time-averaged

in self-similar coordinates to improve the statistical sample

of the average quantities. The averaging interval (105 < "r

< 150) corresponds to two eddy-turnover times, A/q,

where A is the u 1 integral scale in the x 1 direction and q2

= UiUi. The resulting averaged profiles are shown in Fig. 4,

along with experimental data from Ref. 5. The agreement

between the simulation and the experiment is quite good.

The major difference is that the experiment has more in-

tense vertical velocity (u 2) fluctuations, which extend over

a wider range of g. There is a similar, but less pronounced,

difference in the Ul fluctuations. Interestingly, the

u2/AU 2 simulation profile at r=187.5 [after the break-

down of self-similarity, dashed line in Fig. 4(b)] agrees

much better with the experiment. At this late time, the

and _ profiles are too low near the center of the layer,

but careful examination of Figs. 4 (a) and 4 (c) reveals that

away from the center of the layer these late-time profiles

are also in better agreement with the experiment than the

average profiles.

Time-averaged profiles of the components of the vor-

ticity tensor are shown in Fig. 5. The streamwise compo-

nent _ is about 25% larger than the cross-stream and

spanwise components, which are about equal. These rela-
tive magnitudes are consistent with vorticity components

in the homogeneous shear flow simulations of Rogers and

Moin. 36 Balint and Wallace 34 measured _ to be about

75% larger than the other components in their experimen-
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FIG. 4. Comparison of the time-averaged (in sealed coordinates) simulation results for the components of the Reynolds stress tensor ( ) with the
results of Bell and Mehta (1990) [solid symbols, as in Fig. 2(b)] and the simulation profiles at _= 187.5 (----).

tal mixing layer, but this large ratio is likely the result of

inadequate resolution in the measurements. 37 The correla-

tion coefficient ¢OlCO2/(co[ca_) (primes indicating RMS val-
ues) is about 0.26 for Igl < 3 which is a factor of two lower

than found in the homogeneous shear simulations of Rog-

ers and Moin. All components of the vorticity tensor are
essentially zero for Igl > 4, unlike the normal components

of Reynolds stress, which have slowly decaying tails. This

slow decay is due to potential velocity fluctuations. Self-

similarity of the small-scale vortical motions, as indicated

by the _-_jVSm/AU 3 profiles, takes slightly longer to

achieve than the self-similar collapse of the Reynolds stress

5.0000E-4

4.0000E-4-
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FIG. 5. Comparison of the time-averaged (in sealed coordinates) simu-
lation results for the components of the vortieity tensor co_o'--"_.--:
_8./av 3, ----: _8./av _, • .... : _8_/av,, -.-:
(D i¢D2_,'_mJa U 3 .

profiles. However, the collapse of vorticity statistics per-
sists until the end of the simulation, well after _-= 150. This

suggests that the loss of self-similarity at _-_ 150 is caused

by the evolution of large-scale flow features.
From Fig. 2(a), the dimensionless layer growth rate

1 d_ m d(C_m/_ O)

! -- -- (6)
A U dt dz

can be calculated to be 0.014 during the self-similar period.

Note that for spatially developing mixing layers the equiv-

alent quantity is the same as r_o in (1) with 6,0 replaced by

6m. The ratio of the vorticity thickness growth rate [ro_, see

(1)] and momentum thickness growth rate is the ratio of

the vorticity to momentum thicknesses (r,o=4.8r for this

flow). The range for r in "unforced" experiments quoted

by Dimotakis 38 is from 0.014 to 0.022. [Dimotakis quotes

the visual thickness growth rate. We used his suggested
factor of two to relate the "visual" thickness to the vortic-

ity thickness, and we used the ratio of vorticity thickness to

momentum thickness for an error function mean velocity

profile (4.44) to obtain the range quoted here.] The nu-
merical simulation results thus lie at the low end of this

growth rate range, however, they agree fairly well with the

growth rate of 0.016 obtained by Bell and Mehta. 5 This

agreement might be expected given the good agreement of

the Reynolds shear stress shown in Fig. 4(d). The mean

momentum equation provides a direct relationship between

the centerline value of -- _lu2/AU 2 and the growth rate r
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increments are -4-0.25, positive contours are dotted, and tic marks are at 5_,, increments. The vertical lines mark the locations of the x3-x 2 planes depicted

in Figs. 10 and 11. The evolution of the region marked by the box in (a) is shown in Fig. 8.

for a given mean velocity profile shape, and the velocity

ratio of 0.6 used in Ref. 5 is sufficiently large for the tem-

porally and spatially evolving layers to be similar.

At z= 120, when the layer is self-similar, the momen-

tum thickness of the mixing layer has only grown by a

factor of 2 [see Fig. 2(a)], which is small compared with
the growth required to attain self-similarity in many exper-

iments (e.g., a factor of about 10 in Ref. 39, and a factor of

about 9 in Ref. 40). There are two likely explanations for

this difference. First, the inlet mean velocity profiles are

different in the experiments and the computations. The

experimental profiles, being asymmetric and containing a

wake component, may require more development to be-

come self-similar. Second, the experiments may inadvert-

ently include organized disturbances (e.g., two-

dimensional disturbances resulting from the receptivity of

the splitter-plate tip). It may take a long time for the ef-
fects of these disturbances to be eliminated. It is also pos-
sible that the effects of such disturbances would extend into

the self-similar regime, as suggested by Dimotakis and
Brown. 9

B. Structure of the baseline mixing layer

The statistical properties presented in Sec. III A sug-

gest that the TBL simulation is indeed self-similar and in

fairly good agreement with experimentally measured self-

similar turbulent mixing layers. Two differences with the

experimental data of Bell and Mehta 5 are the smaller cross-

stream velocity variances and the somewhat lower growth

rate. The mixing layer is well known for its coherent struc-

tures (e.g., rollers and rib vortices), and it seems likely that

these fairly minor disagreements with the experiment may
be manifestations of some difference in the coherent struc-

tures. Since the simulation and the experiments have im-

portant geometric differences (e.g., the splitter-plate tip),

such differences in the large-scale structure are plausible.
The structural features of the TBL simulation are dis-

cussed below to investigate this issue and to document the

structural properties of a particular self-similar turbulent

mixing layer.

1. Spanwise rollers and pairing

Contours of spanwise vorticity (to z) in xl-x 2 planes of
the mixing layer (Fig. 6) show that there are clumps of

spanwise vorticity (rollers) interspersed with thinner re-
gions that have less spanwise vorticity (braids) both before

(_-=78.5), during (_-=150.0), and after (_-=187.5) the

period of self-similarity discussed in See. IIIA. At the later

two times, braid regions contain many small-scale vorticity

fluctuations, as do the rollers. However, at _-=78.5 there

are at least some braid regions that are nearly devoid of

spanwise vorticity. These "clean" braids are similar to

those found in laminar and transitional mixing layers (e.g.,
Refs. 19 and 41 ).

To study the large-scale structures in more detail, a
diagnostic that will locate the rollers and braid regions in

x 1 and x 3 is needed. This is similar to the situation in

experiments, where a structure must be detected so that it
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can be included in an ensemble average of similar struc-

tures. In this case, however, we wish to map the location
and size of the structures in space; no averaging is to be

done. The results of Rogers and Moser 19 suggest that the

most important difference between the braids and rollers is
the strain dominance of the former and the rotation dom-

inance of the latter. To this end, we consider the two quan-
tities,

_'_--- ---_ (-O 3 dx 2 and _.ij = Sij dx2, (7)
oo oo

where Sij is the strain-rate tensor, and the cross-stream
integral eliminates some of the contributions of small-scale

features. When normalized by the local thickness, these

quantities are measures of the large-scale vorticity and

strain-rate tensor. The layer may be said to be strain dom-

inated where the principal value of Eij in the plane normal
to the mean vorticity is greater than 12. This condition
reduces to 42

avOXl --_1 oo U2 dx2 > 0' (8)

where this serves as the definition of/I. It is expected that
OV/Ox_ will be negative where there are rollers and will be

positive where there are braids, and indeed this is the case
for the flow considered here. However, variations in

cgV/Ox_ are still dominated by small scales. To extract the
large-scale behavior of OV/Ox_, it is filtered in Xl and x3
with a Gaussian filter to obtain the roller diagnostic

_= _(x_-x_,xa-x;) -_. dx_ dx3, (9)
1 3

where G is the bivariate Gaussian filter kernel, with a

width chosen to be equal to the momentum thickness _,_ of

the mixing layer, and rollers are defined as regions where
:_<0.

The _ diagnostic is shown in Fig. 7 at the same times

examined above (_-=78.5, 150.0, and 187.5). It suggests
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FIG. 8. Contours of spanwise vorticity in the xt-x 2 plane at x3= 1_.8b'0mand (a) _-=59.4, (b) _'=66.3, (c) T=78.5, and (d) r=85.9. The domain
depicted is marked with a box in Fig. 6(a). The contour increment is ±0.4AU/_ m,positive contours are dotted, and tic marks are at 5_m intervals.

that there are rollers and braid regions in the flow at all

three times, in agreement with the contour plots in Fig. 6.

The _ diagnostic also gives an indication of the spanwise

coherence of the structures. At -r=78.5, the structures

have a spanwise extent that is larger than the streamwise

spacing, but they are not two dimensional. There are about

eight rollers in the streamwise domain shown. In contrast,

the structure in the center of the x 1 domain at _-= 150.0

does span the domain in x 3. Toward the edge of the x 1

domain at this time the structures are not as well orga-

nized, but they appear to be conglomerating into a second

large roller, which is visible on the domain boundary at

_'= 187.5. Since the spanwise domain size is smaller than

the streamwise spacing of the structures at these late times,

it is not possible for the rollers to have the spanwise vari-

ations that were present earlier [Fig. 7(a)]. Thus the late-
time two-dimensionality of the rollers is an artifact of the

computation. It is likely that the constraints imposed by

the finite spanwise (and streamwise) domain size and the
resulting two-dimensionality of the rollers are responsible

for the loss of self-similarity at late time (See. III A). Re-

markably, the number of structures in the streamwise di-

rection has decreased by a factor of about 4 between the

times depicted in Fig. 7, while the momentum thickness

has only increased by a factor of 2. This is consistent with

the fact that the rollers appear more elongated in the

streamwise direction at -r= 187.5 [Fig. 6(c)].
The roller structures in this flow have clearly increased

their streamwise length scale, so one wonders if they did so

by the "classical pairing" mechanism associated with lam-
inar rolled-up mixing layers, as described by Winant and
Browand. 43 At the earlier time (before self-similarity),

pairing apparently does occur. The two rollers in the box in

Fig. 6(a) are rotating about each other, as can be seen in

Fig. 8. This pairing only occurs locally in the spanwise

direction, as can be seen in Fig. 9, where the _ diagnostic

is shown in the same x 1 domain and at two of the times

depicted in Fig. 8. At the earlier time, the two rollers
shown have begun to merge locally near the center of the

x 3 domain, and later, a single roller remains, which does

not span the entire x 3 domain. Such local pairings are sim-
ilar to those observed in the experiments of Chandrsuda

et al. 11 and in several computations of transitional mixing

layers. 12A3

However, after self-similarity, no such organized pair-

ings have been detected. When the self-similar structures

change scale, the vorticity from one roller appears to ooze

gradually into its neighbors, without the corotation char-

acteristic of pairing. It is instructive to note here that al-

though Brown and Roshko 8 did observe a scale increase of

their large-scale structures as the flow evolved, they did not

observe classical pairings in their turbulent layers

(Rein= 14 000). Also, Hussain and Zaman 39 were unable

to detect pairings in their self-similar turbulent mixing

layer (Rein=85 000). It is not surprising that these high-
Reynolds number turbulent mixing layers exhibit different
behavior than that observed by Winant and Browand, 43

because Winant and Browand's experiment was done at

very low Reynolds numbers (Re m of up to 150). As a

result, their mixing layer growth rate r=0.012 is low, and

the variance of the streamwise velocity fluctuations is only
0.01AU 2. Their flow visualizations suggest that the flow

consists of laminar rollers.

Moore and Saffman 44 proposed an alternative amal-

gamation mechanism that seems to better describe the pro-
cess taking place in the simulations. They examine a model

problem consisting of an array of two-dimensional ellipti-

cal vortices of uniform vorticity [with major axes horizon-

tal as suggested by Fig. 6(c)] and conclude that if the

centers of the vortices are within 3.58,o of each other, a
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FIG. 9. Locations in x I and x 3 of the rollers (gray), as determined by

_? <0 at (a) _-----66.3 and (b) _'=85.9. The Xl domain depicted is that

shown in Fig. 8 and marked by the box in Fig. 6. The black horizontal line

marks the x s location of the plane shown in Fig. 8. Tic marks are at 5b'°m

intervals.

vortex will be torn apart by the strain field of its neighbors.
They expect mixing layer vortex cores to continually grow
by turbulent diffusion, eventually becoming large enough
so that some vortices are torn apart, with their vorticity
being absorbed (perhaps unequally) between their neigh-
bors. Dimotakis and Brown9 observed this "tearing" pro-

cess in a mixing layer experiment at Re_o_ 130 000. At the
end of the numerical simulation, the vorticity thickness is
about 13.6_°,/and therefore the Moore and Saffman crite-
rion would require about 47_ ° between eddies; this would
permit at most 2.6 eddies in the computational domain.

This is in good agreement with the fact that the number of
"rollers" appears to have been recently reduced to 2 at the
end of the simulation (Fig. 7).

2. Rib vortices

In laminar and transitional mixing layers, the dynam-
ics of the braid region and those of the roller are different
due to the strain dominance of the former and the rotation

dominance of the latter. 19In particular, the braid region is
apparently susceptible to a three-dimensional instability,
resulting in the formation of streamwise rib vortices. We
will thus examine the simulated flow at the three times

examined in Sec. III B 1 (_-=78.5, 150.0, and 187.5) for
evidence of rib vortices.

Shown in Fig. 7 along with :_ are the high-enstrophy
regions in the braids. At r=78.5, the ribs are visible as the
long, thin, roughly streamwise vortices spanning many of
the braid regions. Direct examination of these vortices

shows that they behave very much like their counterparts
in pretransitional and transitional flows (e.g., Refs. 19 and
30). At _-= 150.0 and 187.5, however, there are no clear rib
vortices. There are some small-scale vortices visible in the

braid region, but none of them extends across an entire
braid region. In addition, there does not appear to be any
preference for the small-scale vortices to occur in the braid
region. The high-enstrophy regions in the rollers (not
shown) at the two later times are similar to those in the
braids, though denser. The small-scale vortices at this time
appear to be the "worms" that have been found to be a
common feature of turbulent flows by Jimenez. 4_ He sug-

gested that turbulent flows have worm vortices with circu-
lation Reynolds numbers (F/v) between 200 and 400. Es-
timates of the circulations of the strong vortices in the
braid regions at _-= 187.5 are of this order. Howeverl esti-
mates of rib-vortex circulations in the flow at _'=78.5 are

as much as 800, suggesting that these vortices represent
more than just small-scale turbulent structure.

Contours of streamwise vorticity and the passive scalar

in the braid regions (x3-x 2 planes marked by the vertical
lines labeled "A" in Fig. 6) and rollers (planes marked
"B" in Fig. 6) are shown for the two times _-=78.5 and
187.5 in Figs. 10 and 11. These rollers and braids were
selected because they are the most spanwise coherent (see
Fig. 7). At _-=78.5, the strong streamwise vorticity in this
plane is dominated by compact approximately circular re-
gions of intense vorticity. The passive scalar contours in-
dicate a sharp interface in the scalar, and this interface is
rolled up around the streamwise vortices. These features
are characteristic of ribs in the braid regions of nonturbu-
lent mixing layers. In contrast, the streamwise vorticity at
_-=187.5 (Fig. 11) is not well organized, although there
are a few small circular regions of intense vorticity. The
scalar at this time does not have the single sharp interface

with discrete roU-ups seen at the earlier time. Comparing
the braid region [Fig. 11 (a)] to the roller core [Fig. 11 (b)]
suggests that at _-= 187.5 the major difference between the
braid and roller is that the vortical region in the braid is
thinner in the x2 direction.
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FIG. 10. Contours of (a),(b) streamwise vorticity and (c),(d) passive scalar in the x3-x 2 plane at the line marked (a),(c) A (braid region) and (b),(d)
B (roller) in Fig. 6(a) at _-=78.5. The contour increment is (a),(b) 0.3AU/8 °, (c),(d) 0.1, negative contours are dotted, and tic marks are at 5(5°
intervals.

While the structure of the turbulence in the braids and

rollers appears to be similar at _-= 187.5 (and _-= 150.0),
the large-scale deformation imposed on the turbulence is
different in the two regions. This was implicit in our use of
the diagnostic _?, which measures the relative contribution
of two-dimensional strain and rotation to the large-scale
deformation. The braid regions are strain dominated with
strain rates as much as twice the rotation rates, while the
rollers are rotation dominated, also by as much as a factor
of 2. 42

The lack of ribs and pairings in our self-similar flow is
different from several experiments (e.g., Refs. 20, 21, and
23), in which flow visualization of turbulent mixing layers
suggests that ribs and pairings are present. A possible ex-
planation for this difference is the disturbance environment
in the experiments, which may include much stronger two-
dimensional or quasi-two-dimensional disturbances than
are present in the current simulations. Such disturbances
might arise due to the receptivity of the splitter-plate tip. 1°

A lack of two-dimensional (or quasi-two-dimensional) dis-
turbances could also account for the lower u2 variances
and lower growth rates of the simulated mixing layer. The
effect on u2 variances is plausible since simulations by
Moser and Rogers 3° of transitional mixing layers with
forced two-dimensional disturbances do yield larger u2
variances [several times the values shown in Fig. 4(b)].
Also, in the experiments of Bell and Mehta 5 begun from
laminar boundary layers, upstream stations (before self-
similarity), where quasi-two-dimensional disturbances are
expected to be dominant, have a higher u2 variance. Sim-
ulations with enhanced two-dimensional disturbances were

made to investigate this issue; they are discussed in Sec. IV
below.

IV. EFFECT OF TWO-DIMENSIONAL FORCING

To investigate the effect of stronger two-dimensional
disturbances, two additional simulations, FTBL and

GTBL, were made. The initial conditions for both flows

were the turbulent boundary layer conditions used in the
TBL simulation described in See. III, plus additional two-
dimensional disturbances. Adding energy to a two-
dimensional mode of a particular frequency, as well as to
its subharmonics, would result in a forced mixing layer

with a thickness that does not grow linearly in time due to
the organized roller mergings that would result. In an ef-
fort to preserve the self-similar linear growth found in the

TBL simulation and to mimic the lack of phase coherence
likely in experimental situations, the energies of the two-
dimensional modes in the turbulent initial condition were

amplified without changing the relative amplitudes and
phases between them. Since the two-dimensional modes

that are likely to be introduced by a splitter-plate tip would
probably not have a significant u3 component, and because
the modes responsible for the roll-up of the mixing layer
have no u3 component, only the u 1and u2 fluctuating two-
dimensional velocity components were amplified. In the

FTBL initial condition these velocities were amplified by a
factor of 5, in GTBL they were amplified by a factor of 20.
The average (in x) y-integrated energy per unit mass
added to the initial conditions as a result of this forcing was
0.0079A U26° and 0.1784A U2_ O for FTBL and GTBL, re-

spectively, which amounts to 32% and 91% of the total
disturbance energy in these cases.

A. Statistics of the forced layers

The evolution of the momentum thickness in the TBL,

FTBL, and GTBL simulations is shown in Fig. 12(a). The
additional two-dimensional energy in the initial conditions

of the FTBL and GTBL simulations results in more rapid
layer growth early in the flow development. The Reynolds-
stress profiles in the FTBL simulation indicate that the
flow is approximately self-similar over roughly the same

time period as the TBL simulation (i.e., from "r_ 100 until
the end of the simulation at _-= 150.0). During this self-
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intervals.

similar period, the layer growth rate r is approximately the
same as in the TBL case (after a period of reduced growth
rate for FTBL, the curves are approximately parallel). In
FTBL, _?/AU 3 [Fig. 12(b)] reaches a maximum at
r=-113.3 and decreases about 8% after that. This is not as

convincingly constant as in TBL; however, the scaled Rey-
nolds stress and vorticity profiles still collapse about as well
as they do in the TBL flow.

The Reynolds-stress profiles in the GTBL simulation,

particularly the _/A U2 profile, do not collapse as well as
those in the TBL and FTBL simulations. Nevertheless, the
collapse is good enough to justify the use of time-averaged
profiles (here averaged from _-_80 to _'_125) to deter-
mine the impact of such strong initial disturbances on the
flow statistics. Although there are distinct oscillations in
the evolution of the momentum thickness for the GTBL

case [Fig. 12(a)], the average growth rate in the developed

state (roughly between _-_50 and _-_ 125) is r=0.017, or
about 20% larger than that in the TBL simulation. The
stronger time variation of _?/AU 3 for the GTBL case also

reflects the lack of true self-similarity in that flow. As ex-
pected, the collapse of the vorticity statistics is also some-
what poorer than in the other two cases.

Time-averaged mean-velocity profiles from the TBL,
FTBL, and GTBL simulations are shown in Fig. 13. The
FTBL profile is similar to that of TBL, although it is not
quite as linear over the central portion of the layer. The
differences between the GTBL mean profile and those of
the other two cases are more noticeable, with a lack of
symmetry around g=0 and a mean gradient that persists
for _'< --4.

The time-averaged (in scaled coordinates) profiles of
all nonzero components of the Reynolds stress tensor for
the TBL, FTBL, and GTBL simulations are shown in
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Fig. 14. The trends observed in the profiles for the normal
Reynolds stresses with increasing two-dimensional forcing

are similar to those observed in the post-self-similar state in

the TBL simulation (dashed curves in Fig. 4). The

U--_3/AU 2, and to a lesser extent U-_l/A U 2, profiles are reduced

in the center of the layer in FTBL and GTBL. These com-

ponents also have a somewhat wider extent in g. The

u--_2/AU 2 profiles increase both in width and amplitude, with

the amplitude increase for the GTBL case being over a

factor of 2. The smaller average level of the centerline

-- UlUz/AU 2 in the FTBL layer is consistent with the

(slightly) lower average growth rate during the self-similar

period [the FTBL momentum thickness in Fig. 12(a) de-
creases towards the TBL curve after _-= 100 before being

approximately parallel to it]. Similarly, the increased

growth rate for the GTBL ease is consistent with the larger
centerline level of -- u---_2/A U 2 for that flow. For all Rey-

nolds stress components, an increasing lack of symmetry
around the centerline is observed as the two-dimensional

mode amplitude is increased. This is a result of the selec-

tive amplification of modes in the particular boundary

layer realizations used to initialize the simulations.
It should be noted that the results of the Bell and

Mehta 5 experiment are perhaps in better agreement with

the FTBL ease than with the TBL simulation. The exper-

imental mean velocity data lie in between the results for

TBL and FTBL, although they are generally closer to the

TBL profile, particularly at the edges of the layer. More

striking is that the experimental u--_2/AU2 profile agrees very

well with the FTBL data, whereas the TBL data fall below

the experiment (in fact, the experimental data are even
slightly above the FTBL results). The widths of the re-

maining Reynolds stress profiles in the FrBL simulation

are also in somewhat better agreement with the experi-

ment. However, the levels of _ and u_33in the center of the

layer are lower than those of TBL, and therefore further

removed from the experimental values. The good agree-

ment in the level of u-_2/A U 2 between the FTBL simulation

and the experiments of Bell and Mehta is consistent with

the presence of unintended two-dimensional forcing in the

experiments, but the discrepancies in the other quantites
make this far from certain.

The scaled vorticity tensor component profiles for the

FTBL simulation are similar to those shown in Fig. 5 for

the TBL flow, although the profiles are slightly wider in

and the peak levels of _"_22'VSm/AU3 and _"_3'VtSm/AU3 are

about 10% lower (this may be due in part to the reduced

x I resolution of the FTBL simulation in comparison with
that used in the TBL case---such reduced resolution will

necessarily impact small-scale quantities like vorticity

more strongly than large-scale statistics). The differences
between the vorticity statistics in the GTBL and TBL sim-

ulations are more significant, as might be expected given

the large differences in the Reynolds stress profiles. The
vorticity tensor component profiles are even wider in

than those of FTBL, are asymmetric (peaking near

g=0.8), and have peak levels of only about 70% the peak
levels in the TBL simulation.

B. Structure of the forced layers

In addition to the statistical differences between the

TBL, FTBL, and GTBL flows noted above, there are no-

table structural differences. In Fig. 15, the spanwise vor-

ticity in xl-x2 planes is shown for both FTBL and GTBL.
The times are during self-similarity for FTBL (_-= 150.0),

and approximate self-similarity for GTBL (_-= 101.5). The
FTBL vorticity distribution is qualitatively similar to that

in TBL at a comparable time [Fig. 6(b)]. The rollers are

perhaps slightly more distinct. In GTBL however, the roll-

ers are quite distinct and the braid regions are well formed

,0

0.50

0.25-

0.00-

-0.25

-0.50-

6 i i _ 2 5

FIG. 13. Comparison of the time-averaged (in scaled coordinates) mean

velocity profiles for the --: TBL, ----: FTBL, and ..... : GTBL
simulations.
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and largely devoid of spanwise vorticity. Furthermore,
there is a classical pairing in progress at x] = 758 ° (just to

the right of the center of the figure). By this time in TBL

and FTBL, pairing had ceased and rollers were amalgam-

ating by oozing into each other.

Top views of the roller diagnostic _ and the high-

enstrophy regions are shown in Figs. 16 and 17 for FTBL

and GTBL, respectively. In each case, two times are

shown, one before the onset of self-similarity and the other

during self-similarity (or approximate self-similarity in the

case of GTBL). At the early time, both FTBL and GTBL

are similar to TBL [Fig. 7(a)] in that coherent rollers are

clearly visible along with apparent rib vortices in the braid

region. However, the FTBL and GTBL rollers (as visual-

: - ...... 2_.._," .. •, "" _.' :. "' "._ 2"_ ._,,¢ - . "_" " ,.,,.:"5':'_.=- ' " ,-- . -'

.... _;..._ _._.'" __-_'-._ ,', ,.. _).2_%¢_- ,
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FIG. 15. Contours of spanwise vorticity in Xl-Xz planes at (a) _'= 150.0 of FTB[, and (b) _-= 101.5 of GTBL. Contour increments are -4-0.25AU/_m,

positive contours are dotted, and tic marks are at 5t5° increments.
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FIG. 16. Locations in x I and x 3 of the rollers (gray) in FTBL, as determined by _ <0 at (a) _-=66.8 and (b) _'= 150.0. Also shown (in black) are

the locations where the maximum enstrophy exceeds 2.4AU2/_'_. Tic marks are at 5b'°m intervals.

ized by _) are more two dimensional than those in TBL,

with those in the GTBL case being almost exactly two

dimensional. Note that increased roller two-dimensionality

has also been observed in simulations of transitional mixing

layers in which strong two-dimensional forcing is used. 12,46

In both FTBL and GTBL, instances of two rollers coming

together to amalgamate over the entire spanwise domain
are also visible. At later times, FTBL is again similar to

Xl

(b

.Cl

FIG. 17. Locations in x I and x 3 of the rollers (gray) in GTBL, as determined by _ <0 at (a) _-=42.1 and (b) _'= 101.5. Also shown (in black) are

the locations where the maximum enstrophy exceeds 2.4AU2/b_m . Tic marks are at 5b'°m intervals.
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TBL in that rib vortices are no longer visible in the braid

regions. However, GTBL still has rib vortices even at the
late time shown in Fig. 17(b). These results, taken with

those of Sec. III B 2, indicate that coherent fib vortices can

not survive unless there are well-formed braid regions.

Thus, unlike the TBL simulation, GTBL has all the struc-

tural features associated with transitional mixing layers

(rollers, pairings, and fibs), even at late time.

V. MIXING OF A PASSIVE SCALAR

In each of the cases described in this paper, a passive

scalar quantity was simulated in addition to the hydrody-

namic fields. The differences in the structure of the mixing

layers described above have a significant impact on the

mixing characteristics of this scalar.

In Fig. 18, passive scalar contours in Xl-X 2 planes (side

views of the layer) are shown for the TBL, FTBL, and
GTBL simulations. The scalar contours illustrate the same

structural differences that were outlined above in Sec.

IV B. The TBL simulation does not contain "clean" braid

regions and shows no evidence of any "classical" pairings.

The GTBL simulation, on the other hand, contains both of

these features. At the time shown in Fig. 18(c), a pairing

is nearing completion (second "roller" from the left) and

another is underway (the next two rollers to the fight).

The FTBL simulation is largely similar to the TBL flow.

The pairings in the GTBL flow result in large incursions of

irrotational free-stream fluid that penetrate nearly com-

pletely across the layer, a feature that is absent in the other

two simulations. This behavior has often been noted in

experiments (e.g., Refs. 8 and 23) and has been incorpo-
rated into models of the mixing layer. 47

The structural differences in the passive scalar between

TBL, FTBL, and GTBL (Fig. 18) suggest that the mech-

anism by which free-stream fluid gets mixed into the layer
is different in these flows. In GTBL, the free-stream fluid is

engulfed into the layer, after which it gets mixed through-

out the layer. In contrast, in TBL at late time, fresh fluid is

mixed in at the edges of the layer by small-scale eddies.
These structural differences result in differences in the

character of the scalar PDFs.

The scalar PDFs at several locations with g> 0 for

both early and late times in the TBL, FTBL, and GTBL

simulations are shown in Fig. 19, along with results for the

WHIGH2P and TURB2P flows described in Ref. 30. The

PDFs from the other side of the layer (g < 0) are statisti-

cally symmetric to those shown. Both marching and non-

marching PDFs are found to occur in the simulations. The
TBL flow exhibits substantially nonmarching PDFs prior

to self-similarity [Fig. 19(a)], but changes to marching

PDFs once self-similar [Fig. 19(b)]. The FTBL flow is

similar, although it is more convincingly nonmarching

prior to self-similarity. The GTBL simulation, on the other

hand, is convincingly nonmarching throughout its entire

evolution. In fact, it even exhibits a slight "reverse-

marching" character, with the most probable scalar value

at g_ 1.0 being slightly closer to the free-stream value at

g = -- oo than to that at _ = -4-oo.
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Thus, as expected, mixing layers that have distinct roll-
ers with clean braid regions and that undergo classical

pairings exhibit nonmarching PDFs (GTBL and early
time TBL and FTBL). However, the self-similar state

achieved by TBL and FTBL does not have these features

and therefore exhibits marching PDFs. Further evidence of

this is provided by the scalar PDFs from two flows

(WHIGH2P and TURB2P) that both undergo a natural
transition to turbulence. 3° In WHIGH2P, the second pair-

ing is classical, as in GTBL, and the scalar PDFs at that

time are nonmarching [Fig. 19(g)]. In contrast, the second

pairing in TURB2P is a more gradual amalgamation of the

rollers, and it exhibits marching PDFs [Fig. 19(h)].
The scalar PDFs for the WHIGH2P and TURB2P

flows are qualitatively different from those of the simula-

tions begun from turbulent boundary layers, in that the

levels of the peaks associated with the mixed fluid are sig-

nificantly higher. In these flows the probability of finding
mixed fluid with 0_0.5 is about twice the corresponding

value in the TBL, FTBL, and GTBL flows. Examination of

the scalar contours indicates that in these two flows, the

scalar field consists predominately of large regions of well-

mixed fluid in the rollers, surrounded by free-stream fluid

with nearly the free-stream scalar value. There is relatively
less fluid with intermediate scalar values.

Vl. DISCUSSION AND CONCLUSIONS

The numerical simulations of turbulent mixing layers
presented in the previous sections evolve self-similarly (or

approximately self-similarly) after an initial period during

which the flow transitions from boundary layer turbulence

to mixing layer turbulence. The self-similarity of the flows
is demonstrated by the evolution of the momentum thick-

ness, the evolution of the total dissipation rate of kinetic

energy, the collapse of the mean velocity profiles, and the

collapse of the Reynolds stress profiles and the vorticity
statistics. It was determined that the correct self-similar

scaling for the vorticity variances includes a Reynolds

number factor because vorticity is a small-scale quantity

(see Sec. III A). The values of statistical quantities com-

puted from the simulations are within the range of exper-
imental observations.

The simulation results and much experimental data

suggest that the "self-similar state" of a turbulent mixing
layer may not be unique. 9 Different self-similar states may

be characterized by different growth rates r, different levels

of u-_2/AU 2, different structural features, and different sca-

lar mixing characteristics. We include the GTBL simula-
tion in this discussion despite the fact that the flow is not

quite self-similar. It is likely that this lack of self-similarity
is an artifact of the time-evolving simulation in a finite

spatial domain. In the GTBL flow, the approximate self-

similar period is dominated by a few, approximately two-

dimensional rollers. Linear growth and self-similarity in

experiments are obtained by averaging statistics from the

passage of many rollers, which are at varying stages in
their evolution. Thus it is reasonable to expect that the

GTBL simulation, if performed in a much larger stream-

Phys. Fluids, Vol. 6, No. 2, February 1994

wise and spanwise spatial domain, would be self-similar. It

is quite possible that the reason self-similarity was obtained
in the TBL and FTBL computations was because there was

relatively little organized large-scale motion in these cases,

resulting in a large sample of typical (smaller) eddies in

the computational domain.
In the current simulations, the most obvious differ-

ences between the alternate "self-similar states" are struc-

tural. For example, the difference between Figs. 6(b) and

15(b) is obvious. However, the growth rates of the two

flows (r=0.014 for TBL and r=0.017 for GTBL) are not

that different. Both are in the range of experimental obser-
vations (0.014 to 0.022). 38 It seems likely then, that the

experiments referred to by Dimotakis would have struc-

tural features ranging from the relative incoherence of TBL

(See. III B) to organized pairings that are even more

prominent than those of GTBL (See. IV B).
The reasons for these variations must lie in the distur-

bance environment. Mixing layers growing from tripped

turbulent boundary layers are found to ultimately grow at

a slower rate than those originating from laminar bound-
ary layers 1° (except when one of the free-stream velocities

is zero). This is also observed in the simulations described

here, although the growth rate for cases begun from lam-
inar boundary layers 3° is necessarily an average growth

rate since the layers are not self-similar. Also, the splitter-

plate tip can introduce two-dimensional vortical distur-

bances into the flow that depend on the downstream envi-
ronment, including the details of the facility. 1° Thus it is

likely that different experiments have substantially differ-
ent two-dimensional disturbances.

The occurrence of clean braid regions and classical

pairings also has a profound effect on the three-

dimensional structure of the layer. As suggested by the

results of Rogers and Moser, 19 braid regions that are

mostly devoid of turbulent fluctuations are necessary for

the formation of organized rib vortices. If the braid regions

contain substantial turbulent fluctuations, the ribs do not

survive (see See. III B 2), and the turbulence in the braid

regions appears to be no different from that in the rollers.
There is evidence that at least some high-Reynolds-

number experimental mixing layers exhibit structural char-
acteristics similar to those of the TBL and FTBL simula-

tions. (Strictly speaking, it is probably the "pairing
number" of the flow that is most important in determining

the level of flow development rather than the Reynolds
number. 28'48'49) Jimenez, Cogollos, and Bernal 5° used a

digital image processing technique to generate three-

dimensional images from motion pictures taken by

Bernal. 51 At Re,o= 2400, they observe pairings of "classical
Brown-Roshko eddies," organized streamwise structures,

and significant amounts of unmixed fluid inside the layer.

Their pictures of a layer at Re_o= 10 000 are quite different,
however. Although some streamwise structure is still ap-

parent, the organization into spanwise rollers is much less

pronounced (the layer is of roughly uniform thickness)

and no examples of pairing are presented. Also no pockets

of unmixed fluid are observed inside the layer; the authors

conclude "small-scale turbulence is either produced or

M. M. Rogers and R. D. Moser 919
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convected throughout the layer and mixing is more uni-

form." They also note that the lack of freshly entrained

fluid inside the layer makes it difficult to draw conclusions

about the present, as opposed to past, vortex structure.

Batt, 4 in his experiments at Reo_ up to 120 000 noted that

the "shear layer is characterized more by random and/or

three-dimensional effects than by large-scale two-

dimensional coherent structures." The experiments of
Brown and Roshko, s although exhibiting coherent struc-

tures even in the turbulent state, do show some changes as

the Reynolds number increases. In particular, the braid
regions between structures become more "filled" with tur-
bulent small-scale eddies and less free-stream fluid is able

to penetrate towards the centerline. The experiments of

Dimotakis and Brown 9 attained vorticity thickness Rey-

nolds numbers of about 150 000. Although they did report

some pairings, they concluded that "tearing" of an eddy by

the strain field of its neighbors, and the resulting absorp-

tion of its fluid into the collective motion of its neighboring

structures, was also responsible for scale change in their

flow, especially at high Reynolds numbers. This tearing
mechanism of streamwise scale increase is similar to that

observed in TBL and FTBL. Hussain 15also noted that the

"evolution of the large-scale structures in time occurs not
through complete pairing, as widely believed, but mostly

through a combination of tearing, fractional pairing be-

tween segments torn from different large-scale structures,

or partial pairing when one structure captures only a (low-

speed) part of a downstream structure."

As discussed in See. V, the link between the hydrody-

namic structures and the character (marching or non-

marching PDFs) of the scalar mixing is clear. Nonmareh-

ing PDFs are expected whenever organized rollers with

clean braid regions and "classical" pairings dominate the

layer. These are necessary to "rapidly" distribute free-

stream fluid throughout the thickness of the layer. The

marching pdf, which one would expect from an eddy-

viscosity model, occurs when the flow is not so wall orga-
nized.

Differences in u--_2/hU 2 are not as obviously related to

the structural features of the flows. Values can be signifi-

cantly larger than those shown in Fig. 4(b). This is often

associated with developing mixing layers. Bell and Mehta 5

measured values as high as 0.11 [about seven times the

peak value in Fig. 4(b)] at streamwise locations well up-

stream of the self-similar region (Rem_30) in an experi-

ment begun from laminar splitter-plate boundary layers.

The vertical extent of the u 2 fluctuations was also much

wider than that found in the self-similar region. Browand
and Weidman 52 took measurements at "the beginning of

the region of linear mixing-layer growth" (Rem._60). At

this single streamwise station, the peak level of u--_2/AU 2was

found to be 0.024, and the vertical extent of u2 fluctuations

was again larger than that in Fig. 4(b). This resulted in

U--_2/AU 2 > U--_I/A U 2 over the entire profile, and was attrib-

uted to the low Reynolds number of the experiment.
The WHIGH2P and TURB2P simulations described

in Ref. 30 both undergo a "natural" transition to turbu-

lence from laminar initial conditions with simple low-

wave-number disturbances. After the second pairing of the

spanwise rollers, the flows appear "turbulent" (Rem= 1170

and 1120, respectively), but U-_E/AU2 peaks at 0.060 and

0.034, respectively [see Fig. 20(a)]. These levels represent

roughly fourfold and twofold increases over the corre-

sponding levels in the TBL flow. The U_EE/AU 2 profiles are

also much wider than those in the TBL flow and, as ob-

served by Browand and Weidman, u--_2/AU 2 > U--_I/A U 2 at all

cross-stream locations. Despite the substantially increased

level of u-_2/AU2 in the TURB2P simulation, the u-_l/A U 2

and u-_33/AU2 profiles are not that different from the late-

time profiles (dashed lines in Fig. 4) calculated from TBL.
To investigate this further, consider the dimensionless

integrated _ energy given by

l f_, f_ u_22dg ' (10)= =

shown in Fig. 20(b) for the same five simulations. The
GTBL, WHIGH2P, and TURB2P flows are seen to have

_0.2 or larger (recall that both WHIGH2P and
TURB2P undergo organized pairings). This is in contrast

to the TBL and FrBL simulations, where this value re-
mains below 0.1. Also note that T in WHIGH2P ulti-

mately drops to 0. l, similar to FTBL and TBL.This is well
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after the last pairing in this flow. Thus there does seem to

be a link between levels of u--_z/aU 2 and ongoing classical

pairings. Although pairings do occur at early time in TBL
and FTBL, they are infrequent (and not spanwise coherent

in TBL) and therefore do not result in a large value of _/'.

At the second pairing, the level of _ in TURB2P is 65%

of that in WHIGH2P. This is apparently related to the

difference in the character of the pairings in the two flows.

The second pairing in WHIGH2P involves rapid corota-

tion and overturning of the layer. One roller rides up over

the top of the other, creating a circular, or even vertically

elongated paired roller. The second pairing in TURB2P is

delayed relative to that in WHIGH2P. It occurs more

slowly, and appears to result from a gradual "oozing" to-

gether of the rollers. The final paired eddy is elongated in
the streamwise direction (as in TBL), rather than verti-

cally (as in GTBL).
It is likely that differences in roller shape and orienta-

tion account for the differences in the level of _", since an

elliptical vortex with a vertical major axis produces more

FIG. 21. Reynolds stress balances for the (a) u-'_, (b) u-'_2,(c) u_3, (d)

ul u"--_,and ( e ) q2 equations. --: either production [positive curves in ( a )

and (e), negative in (d)] or dissipation [negative curves in (a), (b), (c),

and (e), positive in (d)], ----: time derivative, • .... : turbulent diffu-

sion, -'-: velocity-pressure gradient, and - - -: pressure diffusion.

vertical velocity fluctuations than a vortex with a horizon-

tal major axis. 53When the mixing layer undergoes classical

pairings, the rollers tend to be less elongated in the hori-
zontal direction, resulting in higher vertical velocity fluc-

tuations and therefore higher Y. Thus in a self-similar or

approximately self-similar mixing layer, the level of _" is
an indicator of how dominant clean rollers and classical

pairings are. It would be interesting to determine whether

experiments exist that exhibit both self-similarity and a

high level of _', and if so, whether flow visualization does
indeed indicate the occurrence of classical pairings.

While the simulations suggest that there may be alter-

nate self-similar states, they cannot indicate whether such

alternate self-similar states are temporary or will persist

indefinitely. In particular, it is not clear whether the orga-

nized pairings observed in the GTBL simulation would

continue indefinitely if the flow could continue to evolve in

a larger computational domain. It is clear, however, that if

a universal asymptotic state does exist, it could take a very

long time to achieve (see, for example, Ref. 5). This is
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consistent with the suggestions of Dimotakis and Brown. 9

Since the behavior of GTBL is the result of special manip-
ulated initial conditions, we believe that if a universal as-

ymptotic state does exist, it will be like TBL rather than

GTBL. This is consistent with recent experiments by
Karasso and Mungal 2s that indicate that the "ultimate"

state of the mixing layer is associated with marching
PDFs.
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APPENDIX: REYNOLDS STRESS BALANCES

The governing equation for the evolution of the Rey-

nolds stresses in a time-developing mixing layer can be
written as

)

/ O(p/p) O(p/p) _ OuiOuj
- [ uj _ + u' --_--f-xj ) - 2v ax--)ax_

O2-_iuj
-_-1,' _2X2 . (A1)

The "time derivative" on the left is thus composed of "pro-

duction," "turbulent diffusion," "velocity-pressure gradi-

ent," "dissipation," and "viscous diffusion" terms, where

these terms are given in this order in the above equation

(and include minus signs where present). It is also possible

to further split the velocity-pressure gradient term into

"pressure-strain" and "pressure diffusion" terms,

( uj a (p/p) a (p/p)+u,-&--;-)i

_p [ 3ui Ouj'_ 1 [ apuj ap--ui

In these equations, only the mean velocity component U 1 is

nonzero and due to homogeneity, derivatives of averaged

quantities with respect to xl and x3 are zero. Thus there is

no production term in the _ and _ equations and no

pressure diffusion term in the _ and u-J3equations. The

equation for q2 = uiui can be obtained by contracting the

indices in the above equations. For this equation, the pres-

sure strain is zero and the velocity-pressure gradient term

is entirely due to pressure diffusion.

The time-averaged (in scaled coordinates) profiles of
each of the balance terms in all the Reynolds stress equa-

tions (as well as the q2 equation) for the TBL simulation

are shown in Fig. 21. The viscous diffusion terms are not

plotted because they are an order of magnitude smaller

than any other term across the entire layer and thus cannot

be distinguished from zero in the figure. Note that this is

not the case early in the flow evolution, when the initial

boundary layer turbulence has significant viscous diffusion
near the "wall," which has just been "removed." The pro-
files for the FTBL simulation are similar to those for TBL.

Those for the GTBL flow show significant differences, in-

cluding higher levels for the u-{/AU 2, u-_22/AU2, and

u_2/AU 2 equations, and relatively more turbulent diffu-

sion and less dissipation. They are not presented here be-

cause of the poorer self-similarity of the GTBL flow. All of

the terms have been nondimensionalized by A ua/am . The

appropriateness of this normalization for the dissipation

term has already been discussed (See. III A). The other

terms are also best collapsed by this normalization, as ex-

pected for large-scale quantities.

If the mixing layer considered here were exactly self-

similar, then the centerline level of u_-_u_/AU 2 would remain
unchanged, implying that the time derivative (dashed)

curves in Fig. 21 should be zero at g=0. This can be seen

to be approximately the case; the discrepancy is a measure

of departure from self-similarity. In fact, the uiuj profiles
shown in Fig. 4 can be used together with the assumption

of self-similarity to determine the O_iu_/Ot profiles, which
can then be compared to those in Fig. 21. Defining the

functions f ij and gij,

UiUj(g) am a_iU_(g)

//J(g)=_' gu(_')=A_ " at ' (A3)

and using the definition

X 2 Og g Oam AU

g=a-m-(t) _-_i = a m at rg_m' (A4)

where r is the growth rate defined in (6), it follows that

a m afi j a m afi jag

giY--AU at-AU ag at --rgf_j(g)" (A5)

As noted above, gij(O)=0. The agreement of the profiles
predicted by this equation with those determined directly
from the simulation (shown in Fig. 21 ) is quite good, with

the maximum discrepancy being typically no larger than

the discrepancy near g=O.
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